PRACTICE QUESTIONS FOR COMPETITIVE EXAMINATIONS

SUB: MATHEMATICS

TOPIC 3: BINOMIAL THEOREM

1.	If the coefficients of x ⁷ &	x^8 in the expansion of 2	$+\frac{x}{3}$ are equal, then the	e value of n is -						
	(A) 15	(B) 45	(C) 55	(D) 56						
2.	The sum of the binomial	coefficients of $\left[2x + \frac{1}{x}\right]^n$ is	s equal to 256. The con	stant term in the expansion						
	(A) 1120	(B) 2110	(C) 1210	(D) none						
3.	The sum of the co-efficient expansion of $(1 + x)^{2n}$ is b	ts in the expansion of $(1-2)$	2x + 5x ²) ⁿ is 'a' and the su	um of the co-efficients in the						
	(A) $a = b$	(B) $a = b^2$	(C) $a^2 = b$	(D) ab = 1						
4.	Given that the term of the equal to -	ne expansion (x ^{1/3} - x ^{-1/2}) ¹⁵ wh	ich does not contain x is 5 n	n where m∈N, then mis						
	(A) 1100	(B) 1010	(C) 1001	(D) none						
5.	The expression $\frac{1}{\sqrt{4x+1}}$	$\left[\frac{1+\sqrt{4x+1}}{2}\right]^7 - \left[\frac{1-\sqrt{4x+1}}{2}\right]$	is a polynomial in x o	f degree -						
	(A) 7	(B) 5	(C) 4	(D) 3						
6.	In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the									
	seventh term from its end	is 1/6, then n is equal to	-							
	(A) 6	(B) 9	(C) 12	(D) 15						
7.	The term independent of x in the product $(4 + x + 7x^2)\left(x - \frac{3}{x}\right)^{11}$ is -									
	(A) 7. ¹¹ C ₆	(B) 3 ⁶ . ¹¹ C ₆	(C) 3 ⁵ . ¹¹ C ₅	(D) -12. 2 ¹¹						
8.	If 'a' be the sum of the od $(1-x)^n$ is equal to -	a' be the sum of the odd terms & 'b' be the sum of the even terms in the expansion of $(1+x)^n$, then $(x)^n$ is equal to -								
	(A) a -b	(B) a +b	(C) b -a	(D) none						
9.	The sum of the co-efficien	ts of all the even powers of	x in the expansion of (2x2	- 3x + 1) ¹¹ is -						
	(A) 2.6 ¹⁰	(B) 3.6 ¹⁰	(C) 611	(D) none						
10.	The greatest terms of the	greatest terms of the expansion $(2x + 5y)^{13}$ when $x = 10$, $y = 2$ is -								
	(A) $^{13}\mathrm{C}_5$. 20^8 . 10^5	(B) ${}^{13}C_6$. 20^7 . 10^4	(C) ¹³ C ₄ . 20 ⁹ . 10 ⁴							
11.	Number of rational terms in the expansion of $\left(\sqrt{2} + \sqrt[4]{3}\right)^{100}$ is -									
	(A) 25	(B) 26	(C) 27	(D) 28						

12. If
$$\binom{p}{q} = 0$$
 for $p \le q$, where $p, q \in W$, then $\sum_{r=0}^{\infty} \binom{n}{2r} =$

(A) 2ⁿ

- (C) 2²ⁿ⁻¹
- (D) 2nC

13.
$$\binom{47}{4} + \sum_{j=1}^{5} \binom{52-j}{3} = \binom{x}{y}$$
, then $\frac{x}{y} =$

- (A) 11
- (B) 12
- (C) 13
- (D) 14

14. If
$$n \in N \& n$$
 is even, then $\frac{1}{1 \cdot (n-1)!} + \frac{1}{3! \cdot (n-3)!} + \frac{1}{5! \cdot (n-5)!} + \dots + \frac{1}{(n-1)! \cdot 1!} = \frac{1}{n-1} + \frac{1}{(n-1)! \cdot 1!} = \frac{1}{(n-1)! \cdot 1!} = \frac{1}{(n-1)! \cdot 1!} + \frac{1}{(n-1)! \cdot 1!} + \frac{1}{(n-1)! \cdot 1!} = \frac{1}{(n-1)! \cdot 1!} + \frac{1}{(n-1)! \cdot 1!$

- (A) 2ⁿ
- (B) 2ⁿ⁻¹
- (C) 2ⁿn!
- (D) none of these

15. Let
$$R = (5\sqrt{5} + 11)^{31} = I + f$$
, where I is an integer and f is the fractional part of R, then R f is equal to

- (A) 2³¹
- (B) 3⁸¹

16. The value of
$$\sum_{r=0}^{10} \binom{10}{r} \binom{15}{14-r}$$
 is equal to -

17.
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$$
 is equal to (here $C_r = {}^{10}C_r$)

- (A) $\frac{2^{11}}{11}$ (B) $\frac{2^{11}-1}{11}$
- (C) 311
- (D) $\frac{3^{11}-1}{11}$

18. If
$$a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals -

[JEE 98]

- (C) n a /2
- (D) none of these

- 19. The last two digits of the number 3400 are -
 - (A) 81
- (B) 43
- (C) 29
- (D) 01

- (A) 9
- (B) 5

(C) 3

(D) 11

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	Α	Α	С	D	В	В	Α	В	С
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	С	В	С	D	В	С	D	B,D